Interview with a social insect scientist: Rachael Bonoan

P8

IS: Who are you and what do you do?

I am Rachael, a post-doctoral researcher at Tufts University (Medford, MA) and Washington State University (Vancouver, WA). As a post-doc, my focus is the natural history of an ant-caterpillar relationship in the South Puget Sound, WA. When it’s a caterpillar, the at-risk Puget blue butterfly is protected from predators by ants. For the next couple years, it’s my job to figure out which ants are in the community where Puget blue caterpillars reside, which ants tend the caterpillars, and how the ants behave while defending their charge. Once the caterpillar has been protected, it secretes a sugary snack as a “thank you” to the ant (or ants). (see photo below)

P1

Before starting my post-doc, I studied honey bee nutrition and behaviour in the Starks Lab at Tufts University. The main takeaway from my PhD: diet diversity is important for honey bees (and other insect pollinators).

P6

IS: How did you develop an interest in your research?

As far as insects go, I have always loved them. As a kid, I spent summer nights outside with my dad catching caterpillars, ladybugs, June bugs, whatever I could find.

How I got into social insects is a slightly longer story. As an undergraduate, I studied cognition in social birds. One summer, I was accepted into the Tufts University NSF Research Experience for Undergraduates (REU) Program where I did fieldwork studying butterflies. During the REU Program, I fell in love with fieldwork, but I missed the aspect of sociality. For graduate school, I decided to combine my two interests and applied to labs that studied social insects in the field. I ended up joining the Starks Lab to study honey bees and in studying honey bees, became enthralled with the world of beekeeping.

P2

IS: What is your favourite social insect and why?

This question is so hard. As a beekeeper and someone who recently got their PhD studying honey bees, I feel like I should say honey bees. I do love honey bees, but my favourite social insect might be leafcutter ants. The first time I went to Costa Rica and saw them in action, it was mesmerizing. They walk the same trails so often that they wear down a path in the rainforest. Ants wear down a path in the rainforest. Also, when it rains (which happens often in the rainforest), they just drop their leaf and run home. When the storm passes, they get right back to work!

P3

IS: What is the best moment/discovery in your research so far? What made it so memorable?

One of my overall favourite studies was the subject of my very first graduate school publication. I worked with an undergraduate to study how worker honey bees cool the hive following heat stress. We heated a small section of a honey bee hive with a theatre lamp (very technical equipment), and took thermal images of the hive as it cooled down. We found that honey bees somehow radiate the heat out to the edge of the hive and in this way, cool the hive down in less than 10 minutes. The heated section of our control hive, the one without bees, remained hot even after 20 minutes!

This was also the easiest and quickest publication process I have ever been through. I submitted the manuscript in February, we quickly received positive reviews, and the paper was published by the end of April. My advisor told me to never expect an experience like that again.

P7From Bonoan et al. 2014: Comparison of representative experimental and control infrared images taken pre- and post-heating. The colour green indicates the presences of bees in the experimental hive and the heating pads in the control hive. Red and white areas indicate temperatures above 37 °C. In the experimental hive, the red area grew significantly larger within 3 min of cooling and disappeared within 9 min. In contrast, the high heat area in the control hive gradually decreased in size and still persisted after 18 min of cooling. Such differences indicate that workers effectively cooled the hive by absorbing the heat moving it into the periphery

Full citation: Bonoan RE, Goldman RR, Wong PY, Starks PT (2014) Vasculature of the hive: heat dissipation in the honey bee (Apis mellifera) hive. Naturwissenschaften 101, 459-465.

IS: Do you teach or do outreach/science communication? How do you incorporate your research into these areas?

Yes! Teaching, mentoring, and communicating are three passions I discovered while in graduate school. At Tufts University, I teach an undergraduate-level class called “From Bees to Beetles: Insect Pollinators and Real-World Science.” Students get assigned an insect pollinator that they follow throughout the semester and end the semester by creating a pollinator protection plan for their insect. The students read primary literature that we discuss in class, some of which are my own publications.

I also lead a program, “All About Bees,” at the Discovery Museums in Acton, MA. One of my favourite activities in this program is honey tasting. Before they taste various honeys side-by-side, many people don’t realize how different the honeys are! This gives me a chance to talk about how different flowers have different nectar chemistry, and different nutritional values for pollinators. I also bring microscopes for people to get an up-close look at tiny bee parts and when possible, I bring my teaching hive of live (but contained) honey bees.

I’ve also given various presentations about my honey bee research and the importance of insect pollinators in general to beekeeping associations, public school teachers, girl scout troops, high school students, etc.

P4

photo credit: Evan Sayles

IS: What do you think are some of the important current questions in social insect research and what’s important for future research?

The big important question that remains, and may always remain, is: how did sociality evolve? Insects provide a great study system for this question, especially when families or subfamilies of insects exhibit different levels of sociality, and the comparative method can be used. Apidae, for example has social bumble bees, gregarious carpenter bees, and thousands of solitary ground-nesting bees. Relative to social bees, there is very little research on solitary bees—maybe solitary bees hold an answer to evolution of sociality.

Investigating the evolution of sociality has also gotten bit more complex—and interesting! —with the development of tools to study the gut microbiome. This is highlighted in a recent Insectes Sociaux article by Jones et al. showing that the honey bee gut microbiome is associated with behaviour. Such findings could have implications in the development of the caste system and the division of labour. Thus, a more current question may be: how have microbes influenced the evolution of sociality?

IS: What is the last book you read? Would you recommend it? Why or why not?

The last non-fiction book I read was Journey to the Ants by Bert Hölldobler and E.O. Wilson. I would recommend it to anyone interested in social insects, ants, or science in general. The book does a great job covering the awesome things about ants while describing Hölldobler and Wilson’s beginnings in science.

The last fiction book I read was Caroline: Little House, Revisited by Sarah Miller. I would recommend this fanfiction book to anyone who loves Little House on the Prairie, like myself. The book tells the story of the family’s journey from the big woods to the prairie from Caroline’s (the mother, for any non-little house fans) point of view. I enjoyed seeing the journey from the mother’s point of view, and I found the author was true to the personalities and family dynamic of the original books.

IS: Outside of science, what are your favourite activities, hobbies or sports?

I go few places without my camera. I especially enjoy getting down on the ground for some macro-photography.

I also love to read, bake, and whenever possible, get outside. I love hiking—my husband and I have a lifelong goal of getting to as many national parks as possible. So far, we’ve been to four together (I’ve been to a fifth without him).

IS: How do you keep going when things get tough?

Science, like life, never goes as smoothly as you want it to. That’s just how it is. It doesn’t mean you’re a bad scientist, or you’re a failure, or you don’t belong. When things get tough, I try to remind myself of this. Science is a challenge and a continuous learning process, which is why I love it. It’s also helpful to talk through things when I feel a bit down in the dumps about an experiment, or something goes awry in the field.

When I start to feel overwhelmed by trying to do too many things in general (which I sometimes do), just being outside is my remedy. Driving out of the city to a place where I can breathe in the fresh air, and smell pine trees, usually resets me.

IS: If you were to go live on an uninhabited island and could only bring three things, what would you bring? Why?

Oh man, this is tough. If I can bring a person as my “thing,” I’d bring my husband. I’d also bring my Swiss Army knife and my Red Sox hat, both of which I rarely do fieldwork without. Both are useful, but also have sentimental value and would remind me of home.

IS: Who do you think has had the greatest influence on your science career?

Over the years, I have had so many amazing mentors, it’s hard to pick one.

My very first mentor in science was my high school biology teacher, Mr. Saunders. In Mr. Saunders’s class, we did an experiment that required watching a goldfish open and close its gills, so we could measure respiration. It may sound tedious to some, but I loved it! That was the moment I realized I wanted to pursue science.

Also, Natasha, my REU mentor during my first field experience was huge. Natasha showed me that it was possible to do science outside! It was that summer that I realized I could have a job outdoors, observing and/or chasing insects.

IS: What advice would you give to a young person hoping to be a social insect researcher in the future?

Stay curious. As we grow up, our natural curiosity that is at the forefront as children, tends to get pushed toward the back. Holding on to that childlike curiosity will help you be a better scientist and a better citizen, no matter what you study or where you call home.P5

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s